关闭 您好,检测到您使用的是Internet Explorer 6,建议升级浏览器以达视觉到最佳效果及最佳浏览速度。 Google ChormeFirefox Internet Explorer 8
澳门永利官网棋牌入口-永利皇宫棋牌2023最新版本

澳门永利官网棋牌.什么是永磁同步电机 旋转磁场是如何产生的

发布时间:2024-03-10 13:10:33 来源:永利澳门官网入口 作者:永利皇宫棋牌2023最新版本

产品介绍

澳门永利官网棋牌

  工程问题本质上是解决两个“流”的问题,一个是“信息流”,另一个是“动力流”。我们前面说到的自动控制,信号处理其实都属于“信息流”的范畴,解决的是大脑和神经的问题,而“动力流”,则是要解决肌肉问题。只有两个“流”处理好了,才能做出一个成功的工程。今天,我们就来说一说“动力流”的核心部件之一——电机。

  电机(Electrical Machine)本质是一个能量转换装置(电能和机械能互换),包括电动机和发电机。工业中电动机更常见一些,因此狭义的电机通常是指电动机。

  那磁铁和永磁电机有什么关系呢?——永磁电机就是利用磁铁制作的电机,只不过磁铁这个名字不够高大上,专业术语一般叫“永磁体”。电现象和磁现象人类早就已经了解,但是直到19世纪,电学和磁学的研究仍处于很基础的阶段,而且绝大多数物理学家都认为电和磁是两种完全不同的现象。第一次工业后期,电磁学才逐渐合体并开始蓬勃发展起来,并催生了第二次工业——电力,这其中贡献最大的有这么几个人:奥斯特、安培以、法拉第以及高斯等,他们最重要的的工作都完成于1820年至1831年,最后由开了挂的麦克斯韦进行了总结并提出了完整的电磁理论。电机的基本理论和工程实现基本都是在这一时期成型的,因此要想学习电机,了解基本的电磁理论发展过程是非常有必要的。

  19世纪以前,人们一直以为电与磁势完全不同的现象,没有什么联系,虽然有一些零星的物理现象暗示它们之间似乎有一些说不清道不明的关系。直到1820年7月,丹麦的物理学家奥斯特(H.C.Oersted,1777-1851)发表了一篇文章《关于磁针上电流碰撞的实验》,向科学界宣布了电流的磁效应——电和磁其实是一对CP。

  奥斯特的论文起源于一个很偶然的实验——在电池的两极之间接上一根很细的铂丝,在铂丝的下方放置一枚磁针,然后接通电源,很正常的操作,貌似没什么,但是现象却很令人吃惊——小磁针转动了,一直转到铂丝垂直的方向,改变电流方向,又发现小磁针向相反方向偏转。

  奥斯特的发现揭示了长期以来认为性质不同的电现象与磁现象之间的联系,电磁学立即进入了一个崭新的发展时期,法拉第后来评价这一发现时说:“它猛然打开了一个科学领域的大门,那里过去是一片漆黑,如今充满光明。”人们为了纪念这位博学多才的科学家,从1934年起用“奥斯特”的名字命名磁场强度的单位。

  奥斯特可能怎么也没有料到,从1820年7月发表电流的磁效应的文章后,仅仅经历了四个多月时间,电磁学就经历了从现象的总结到理论的归纳一次大飞跃,从而开创了电动力学的理论。而推动这一发展的,是一个我们非常熟悉的人——安培。

  前面我们说到,能斯特发现了电流的磁效应,这个实验结果强烈震撼到了安培——一个被称之为“电学中牛顿”的大神。安德烈·玛丽·安培(André-Marie Ampère,1775 — 1836)出生于法国里昂,是我们学物理学的最早认识的科学家之一,因为电流的单位就是“安培”。

  200年前的科学界和现在也差不多,那就是一个热点文章发表后,总有一大群人蜂拥上来,发表灌水文章。安培在看到奥斯特的电流的磁效应的文章后,也立马开始了这一热点领域的研究。显然安培不属于灌水的这一类人,因为他不差名气和声望,驱使他前进的,是他对自然规律的好奇心。

  当然,安培是不会满足于到此为止的,因为这实在算不上的什么重大发现——那不是圆怎么办,如果是任意曲线呢?——安培伟大的地方在于,他还真的将“圆”扩展到了任意曲线上。

  这个公式暗含一个结论,那就是磁场是由运动的电荷(即电流)产生的,安培认识到磁现象的本质是电流 ,把涉及电流、磁体的各种相互作用归结为电流之间的相互作用,提出了寻找电流元相互作用规律的基本问题。因此在电磁学中,把产生磁场的电流也叫磁动势或磁势(Magnetomotive Force),简写为MMF,注意这是一个非常重要的概念,很多我们熟悉的磁场,都可以应用安培环路定理来计算。

  法拉第(Michael Faraday,1791-1867),英国的物理学家。法拉第可以说是实验物理学家的代表,一生做了无数次的实验,遍布整个电磁学领域,其中最具代表性的,就是电磁感应定律了:磁通量变化产生感应电动势。

  电磁感应定律的定量描述为:线圈中感应的电动势(Electromotive Force),简称EMF,与每匝线圈中磁通量的变化率以及匝数成正比,写成公式就是:

  这个公式是洛伦兹公式的简化版,也就说,我们可以通过电荷大小、运动速度以及所受到的力来反推周围磁场的大小,这个磁场的大小就是磁通密度,也叫磁感应强度,单位是特斯拉(Tesla)。注意,磁通密度是电机中最重要的概念之一。

  都是磁场,为啥用两个量表示?他们是一回事吗?——首先,可以明确一点,这俩货量纲都不一致,肯定不是一回事。

  磁导率描述的是电荷感受的磁场(输出)与电流产生的磁场(输入)的比值,描述前者随着后者的响应。既然是响应,就会有幅值响应和相位响应,所以本质上,磁导率是一个复数,只不过呢,在电机里面都是工作在低频段,相位滞后很小,可以忽略,一般只看幅值关系。

  1821年,法拉第制作了一个装置,这个装置能将电能转化成机械能,被认为是世界上第一台电动机。

  法拉第的装置的组成非常简单:将水银注入一个圆形容器里面,中间放置一块永磁体,一根长的导线一端悬挂,另一端浸入容器里的水银里面,最后再外接一个直流电源。原理也很简单,永磁体产生的磁场与导线产生的磁场相互作用,产生一个使导线绕轴旋转的力。法拉第的天才之处在于想到了用水银(常温液体,有良好的导电性)解决了电机连续旋转的所需要的换向问题。

  法拉第的电机验证了机电能量转换可以连续进行的,为电机的发展奠定了坚实的基础。当然现代电机和法拉第的电机模型有了较大的区别,但原理都是完全一致的:都是两个磁场相互作用。

  我们从小学就知道,磁铁分N极和S极,磁力线从N极出发,最后回到S极;磁铁同极相斥,异极相吸。磁铁磁极之间的相互作用示意图如下:

  利用磁极之间的相互作用力,理论上我们可以移动一个磁极,让另外一个磁极跟着运动,如果第一个磁极旋转的话,另一个磁极也会跟着旋转。但是这样无法称之为电机,因为旋转一个磁极需要的是机械能,这样本质上是机械能之间的转换,不是电能和机械能之间的转换。那怎么办呢?

  安培定律告诉我们,磁场本质是由电流产生的,我们想要的是磁场之间的相互作用,因此主要有电流即可,一个很自然的想法就是:能不能将两个磁场中的一个用线圈来产生呢?——当然可以,永磁同步电机就是这么干的,具体见下图:

  我们一般将永磁体放在转子上,定子是一个线圈,线圈通电后,也会产生一个磁场。根据我们的直观感觉,很容易得出如下结论:

  当两个磁场轴线有一定夹角的时候(上图中),磁场之间有相互吸引力,但是这个力既有径向分量,也有切向分量,因此会产生一定的转矩。

  当两个磁场轴线垂直的时候(上图右),磁场之间有相互吸引力,但是这个力主要是切向分量,因此产生转矩最大。

  磁场的本质是电流产生的,产生磁场的电流又叫磁动势,假如我们胆子更大一点,是不是可以进一步猜想:

  当然,真正的电机是不会直接拿线圈和永磁体直接相吸的,这样效率太低,一般是将线圈绕在磁轭上,磁轭是软磁体,起着导磁的作用,如下图所示。

  我们前面说了,电机产生转矩就是两个磁场相互作用,当个磁场都在连续旋转时,就产生了一个固定的旋转力矩。要产生旋转的磁场,就要有“旋转”的电流;要产生“旋转”的电流,就要有“旋转”的电压;同时旋转的磁场还会产生“旋转”的磁链,其示意图如下:

  文章中,我们把旋转的矢量用加粗带箭头的符号表示,把矢量用只带箭头的符号表示。电压、电流以及磁链虽然以相同的速度在旋转,但是其相位还是有差别的,因此,我们有必要定义一个基准,把这个相位信息表达出来。在电机里面,为体现逼格,我们一般不叫xy轴,而是把永磁体所在的轴线称之为d轴(Direct Axis),也叫直轴,垂直于永磁体的轴线称之为q轴(Quadrature Axis),也叫交轴。d轴和q轴相差90°电角度,示意图如下:

  磁链表征着磁场的信息,对于永磁电机而言,转子一般是永磁体,所以只对定子线圈进行磁链计算即可。我们知道线圈磁链计算公式为:

  即单位电流产生的磁链,电感和电阻类似,虽然是通过磁链和电流来定义和计算的,但是其本质是由磁路的物理结构决定的,与电流没有关系(除非电流引起磁路饱和,相当于改变了磁路的物理结构)。

  电机中磁路主要研究磁链方程,而电路主要研究电压平衡方程。忽略电机中的铁损及漏磁等,对于定子线圈,模型可简化成下图所示:

  力矩是电机设计及控制中非常核心的一个量,一把书上要么是直接给出方程,要么是从能量转换的角度推导出,要么太粗暴,要么太复杂,都不太容易理解,今天,我们从能量守恒的角度来看一下,希望能减轻一下各位童鞋的负担。

  电机,本质是一个能量转换装。